
Mathematical Modeling for Cell Biology

CellBio 24 workshop

Sunday, December 15th

In order of appearance: Stefan Hoops, Leslie Loew, Michael Blinov, Ann Cowan

Introduce kinetic simulations, steady state analysis, parameter estimation, spatial modeling, rule-based models, demonstrating them using two modeling and simulation tools: COPASI (<u>http://copasi.org</u>) and Virtual Cell (<u>http://vcell.org</u>). This handout is available at: <u>https://compcellbio.org/assets/ASCB2024.pdf</u> See also: <u>https://compcellbio.org/</u>

Capabilities of our modeling tools:

METHODS	COPASI	VCell
Compartmental deterministic modeling (ODE)	1	✓
Stochastic compartmental modeling (SSA)	1	✓
Spatial deterministic modeling (PDE)		\checkmark
Steady-state modeling	1	
Stochastic differential equations (SDE)	1	
Parameter fitting	1	✓ (COPASI)
Compartmental rule-based modeling of multi-component molecules		✓ (BioNetGen)
Compartmental agent-based modeling of multi-component molecules		✓ (NFsim)
Spatial stochastic modeling		✓ (SmolDyn)
Spatial stochastic modeling accounting for volumes		✓ (SpringSalad)

Example models for today's workshop

- Steady-State, Time Course, and Parameter Fitting with COPASI (Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades) - presented by Stefan Hoops (Biomodels Database: BIOMD000000010)
- Using PDEs to simulate FRAP of a biomolecular condensate (Cowan and Loew, Biophys. J. 2023, <u>PUBMED: 37353932</u> - presented by Leslie Loew (<u>http://vcell.org/biomodel-255507058</u>)
- Using ImageJ to define initial concentration distribution in reaction-diffusion simulations (Ding et al., 2020; Current Biology; <u>PUBMED:32155414</u>) presented by Michael Blinov (<u>https://vcell.org/biomodel-169993006</u>)
- **Rule-based modeling defining molecules and multi-molecular species** (Nosbisch et al., 2022, JBC;
 <u>PUBMED:35367415</u>) presented by Michael Blinov (<u>https://vcell.org/biomodel-232498815</u>)

Learning resources

This presentation: <u>https://compcellbio.org/assets/ASCB2024.pdf</u>

COPASI:

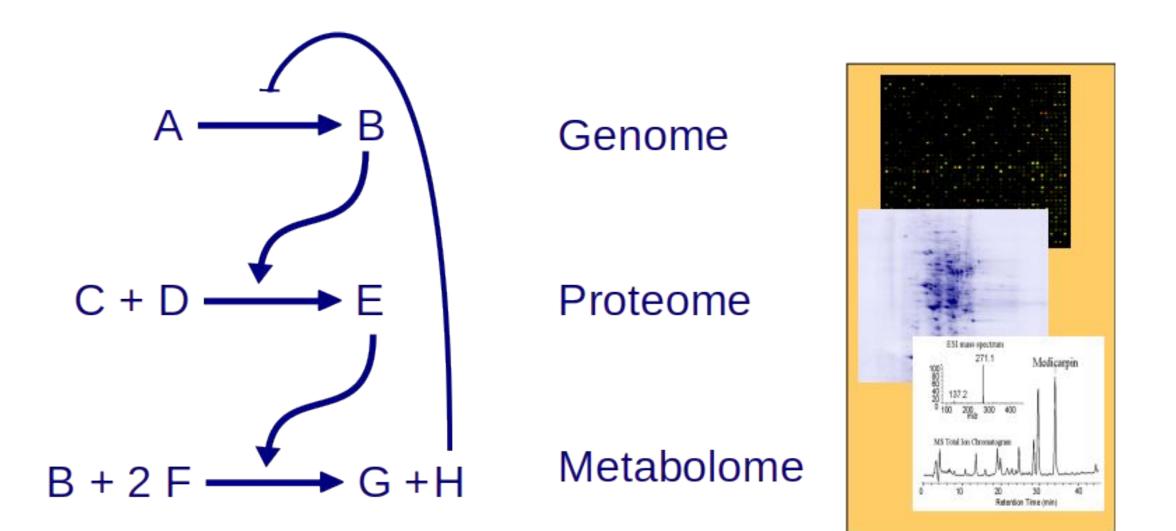
https://vcell.org/support: Multiple Tutorials(including FRAP and Rule-based) Links to YouTube channel, CompCellBio lecture videos

Computational Cell Biology Courses Online Feb 24-28, 2025 <u>https://compcellbio.org/ccbworkshop</u> In person CCB Workshop, Summer 2025.

CompCellBio workshops https://compcellbio.org/ccbworkshop

26th Annual CCB Workshop February 24 - 28, 2025 Please note this is the online format.

25th On-site Workshop Computational Cell Biology July 22-24, 2024

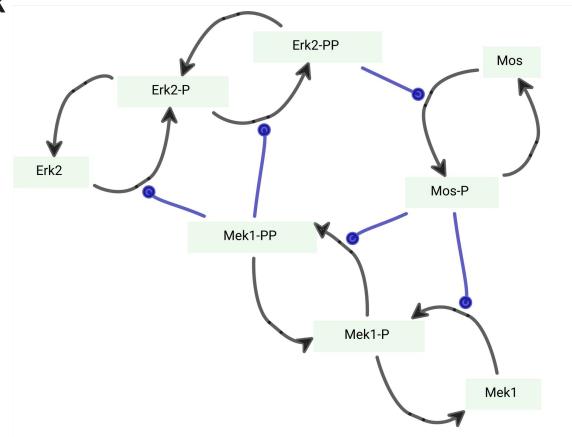

Farmington, CT, USA

COPASI Capabilities

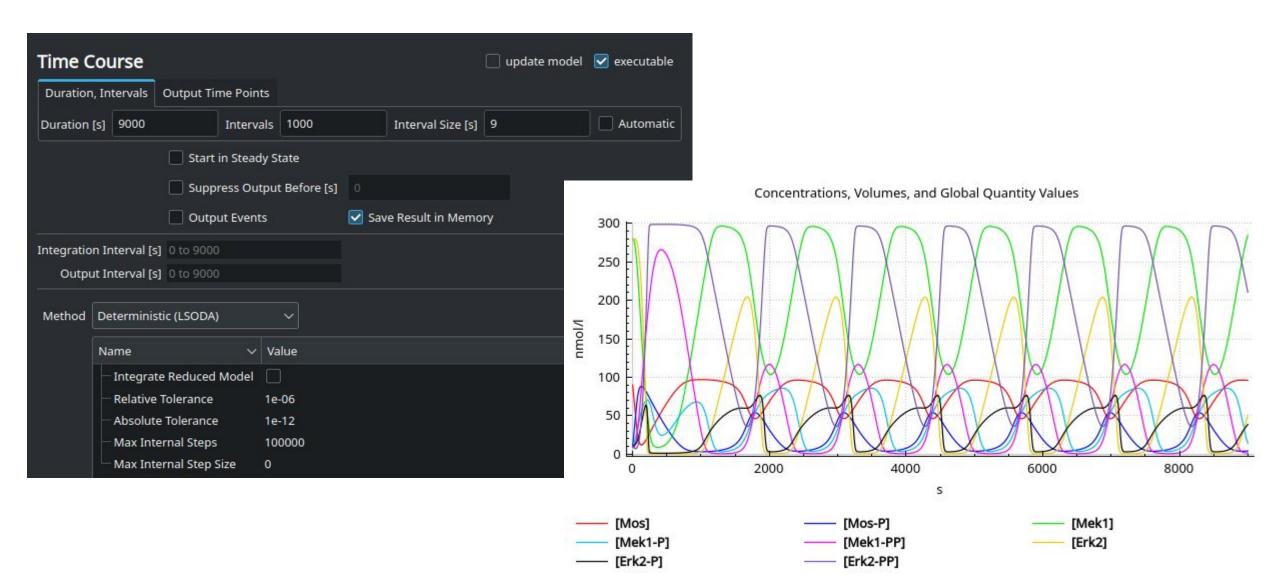
- Time course (deterministic, stochastic, and hybrid algorithm)
- Steady state
- Stoichiometric analysis of the reaction network, including mass conservation analysis and elementary flux modes.
- Optimization of arbitrary components of the model using a range of diverse algorithms.
- Parameter estimation using a range of diverse optimization algorithms. This can be done over several different experiments simultaneously, including mixtures of steady-state and time course experiments.
- Local sensitivity analysis.
- Metabolic control analysis (a special form of sensitivity analysis).
- Time scale separation analysis; this allows definition of fast and slow components of the model, in a time-dependent way.
- Analysis of stochasticity using the linear noise approximation (allows estimating variances and co-variances even in the presence of large numbers of particles).
- Cross sections, which allow to characterize non-linear dynamics properties, such as oscillations and chaos.
- Lyapunov exponents, which allows to establish if the system dynamics are chaotic.

Biochemical Process

Mathematical Model


$$\begin{pmatrix} \dot{A} \\ \dot{B} \\ \dot{C} \\ \dot{D} \\ \dot{E} \\ \dot{F} \\ \dot{G} \\ \dot{H} \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1(A, B, H) \\ v_2(B, C, D, E) \\ v_3(B, E, F, G, H) \\ v_3(B, E, F, G, H) \end{pmatrix}$$

$$\dot{\mathbf{x}} = \mathbf{N} \mathbf{v}$$
 with: $\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \dots \\ \mathbf{x}_n \end{pmatrix} \mathbf{v} = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \dots \\ \mathbf{v}_m \end{pmatrix}$


Example 1: COPASI

Kholodenko B. 2000: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades

- Activated Mos activates Mek1
- Activated Mek1 activates Erk2
- Activated Erk2 activates Mos

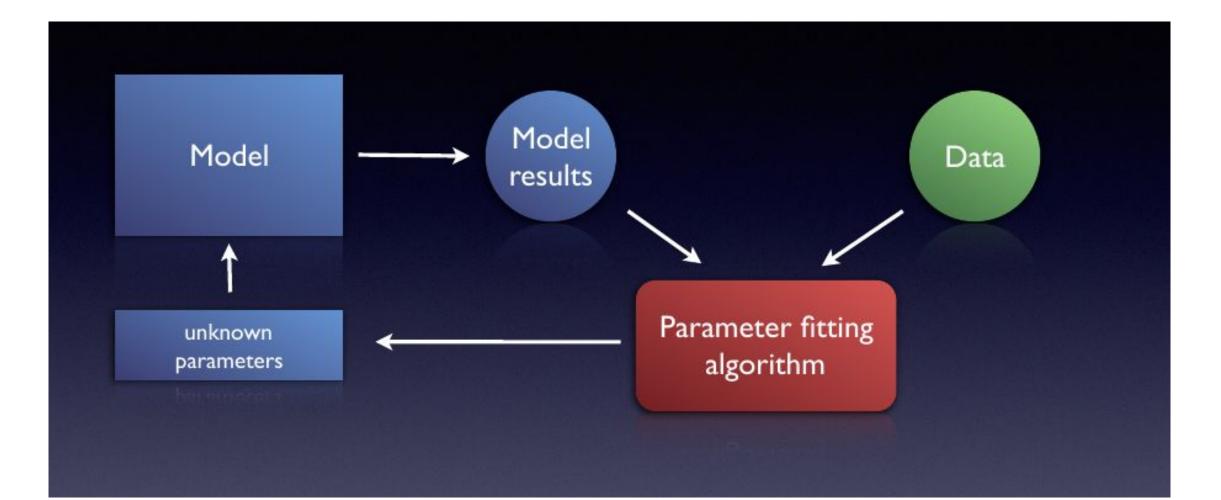
Time Course

Steady State

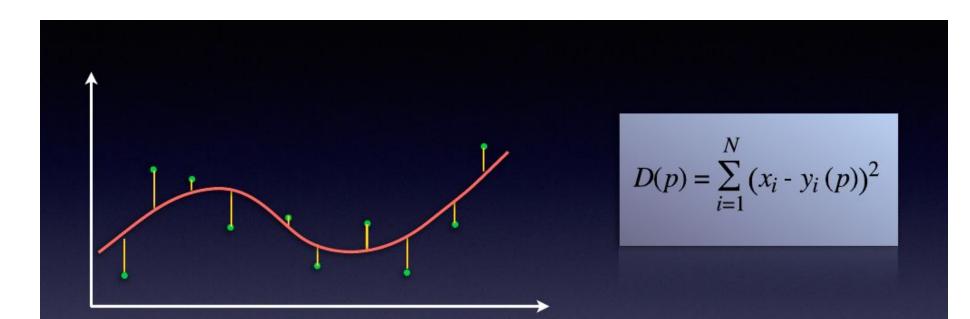
teady State	
Name 🗸 🗸	Value
Resolution	1e-09
Derivation Factor	0.001
Use Newton	
Use Integration	
Use Back Integration	
Accept Negative Concentrations	
- Iteration Limit	50
- Maximum duration for forward integration	100000000
- Maximum duration for backward integration	1000000
Target Criterion	Distance and Rate

Steady State Result

A steady state with given resolution was found.


Species Compartments Model Quantities Reactions Stability Jacobian (Com

KINETIC STABILITY ANALYSIS The linear stability analysis based on the eigenvalues of the Jacobian matrix is only valid for steady states.


Summary: This state is unstable, transient states in its vicinity have oscillatory components.

Eigenvalue statistics: Largest real part: 0.00158073 Largest absolute imaginary part: 0.00701841 The complex eigenvalues with the largest real part are: 0.00158073 + |- 0.00701841i 3 are purely real 0 are purely imaginary 2 are complex 0 are equal to zero 2 have positive real part 3 have negative real part stiffness = 9.70885 time hierarchy = 0.186566

Parameter Estimation

Parameter Estimation

 x_i : measured values for time t_i $y_i(p)$: simulated values for time t_i , parameter p

Parameter Estimation

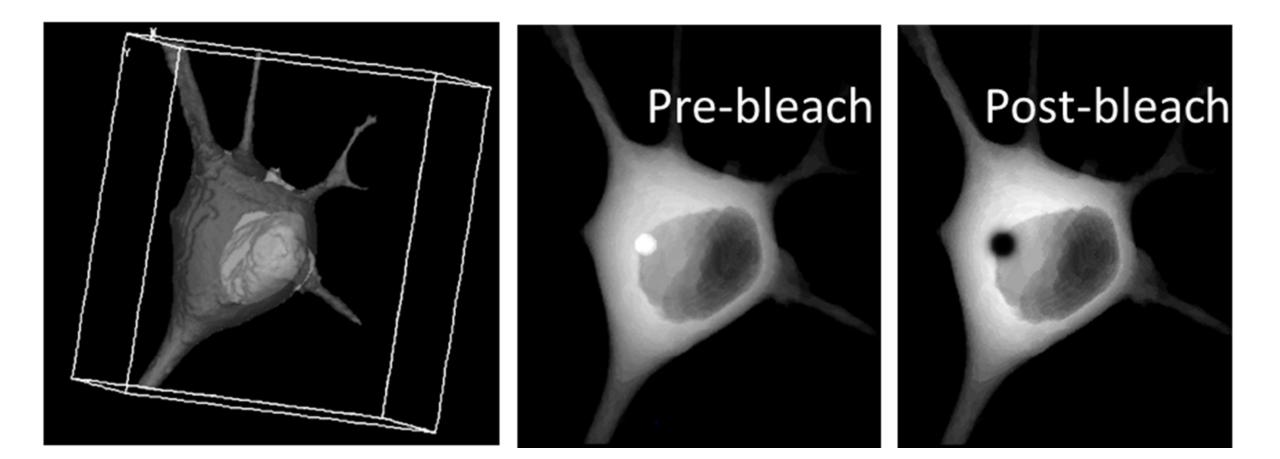
Parameter Estimatio	on	🗌 update model 🗌 executabl	e	time	MAPKKK-P	MAPK-P
		Experimental Data Validation Dat	a	50	65.71	13.20
Randomize Start Values	🗌 Create Parameter Sets 🛛 🗹 Calculate S	itatistics 📃 Use Time Sens		100	98.34	20.48
Parameters (6) Constraints	(0)			150	91.86	43.14
1 0.25 ≤ (MAPKKK activa	tion).V1 ≤ 4.75; Start Value = 0.252586			200	88.49	66.36
2 0.025 ≤ (MAPKKK inact	ivation).V2 ≤ 0.475; Start Value = 0.410616			300	80.44	2.03
	ation of MAPKK-PP).V5 ≤ 1.425; Start Value = 0.5			400	49.17	0.60
4 0.075 ≤ (dephosphory	lation of MAPKK-P).V6 ≤ 1.425; Start Value = 0.98	7345				
5 0.05 ≤ (dephosphoryla	tion of MAPK-PP).V9 ≤ 0.95; Start Value = 0.6955	92	Parameter Estimation Result	500	37.84	2.03
6 0.05 ≤ (dephosphoryla	tion of MAPK-P).V10 ≤ 0.95; Start Value = 0.7450			600	24.79	1.45
		80	*	800	8.56	4.79
		60	+	1000	3.80	17.02
Object	(MAPKKK activation).V1	40		Jessen dessed dessed		
Lower Bound 🗌 - Infinity	0.25					
Upper Bound 🗌 + Infinity	4.75	20		And the second s		
Start Value	0.252586	0	400 600		800	1000

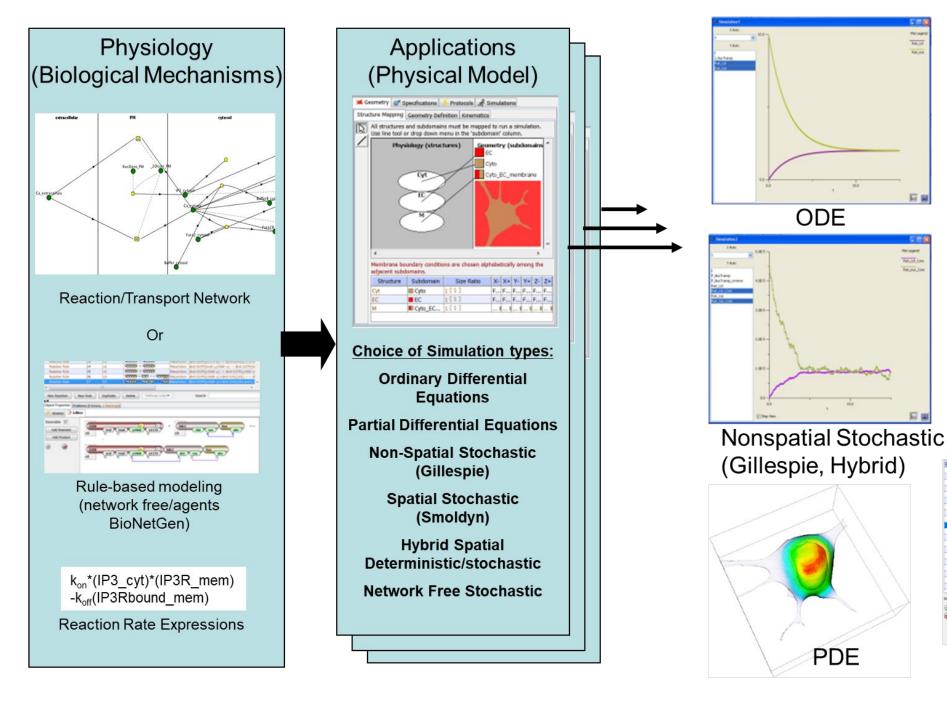
Experiment, [Erk2-P] (Fitted Value)

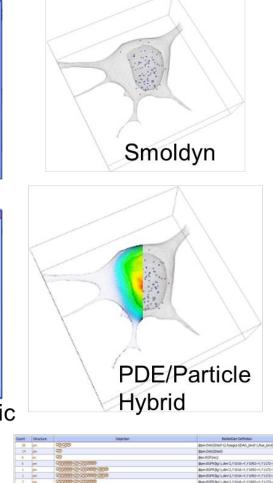
VCell Capabilities

- •Reaction Diffusion Advection Electrophysiology
- •0, 1, 2 or 3D geometries, optionally from microscope images
- Deterministic and/or stochastic simulations
- •Reaction networks or reaction rules
- •Parameter scans and COPASI parameter estimation
- •Database of models and model components
- •Links to external model and pathway resources
- •Biological Problems
 - –Signaling and metabolic pathways
 - -Intracellular trafficking
 - -lon channels
 - -Virtual microscopy
 - -Fluorescent indicators and probe redistribution

Example 2: Using PDEs to simulate FRAP of a biomolecular condensate


 $\leftarrow \rightarrow$ C $\stackrel{\circ}{\sim}$ vcell.org/vcell-published-models


Home Download Support Publications About

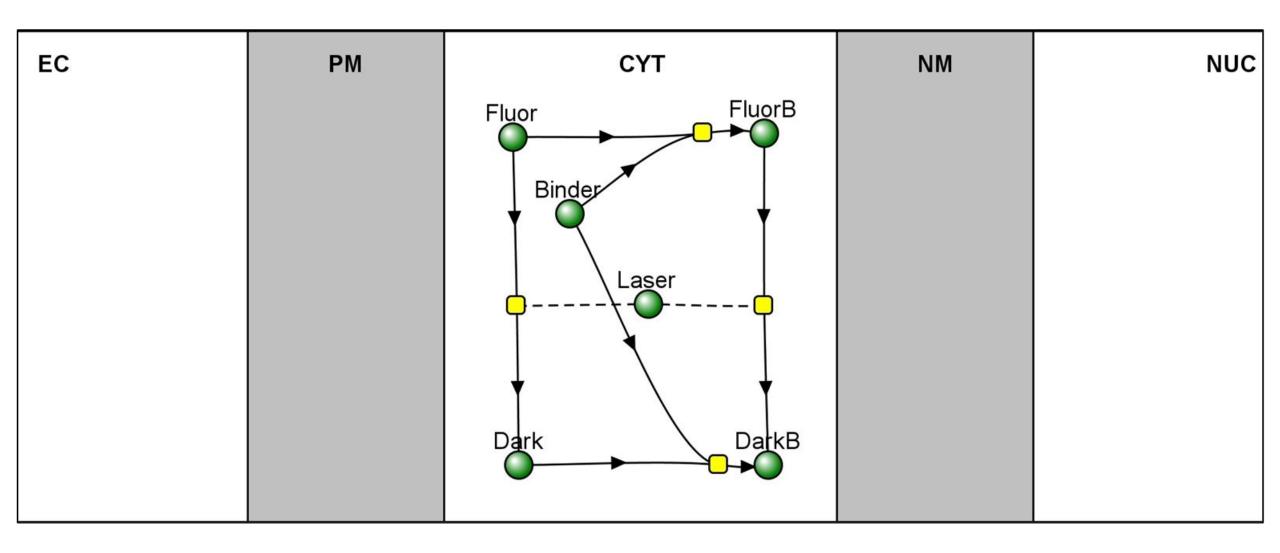

Beyond analytic solution: Analysis of FRAP experiments by spatial simulation of the forward problem.

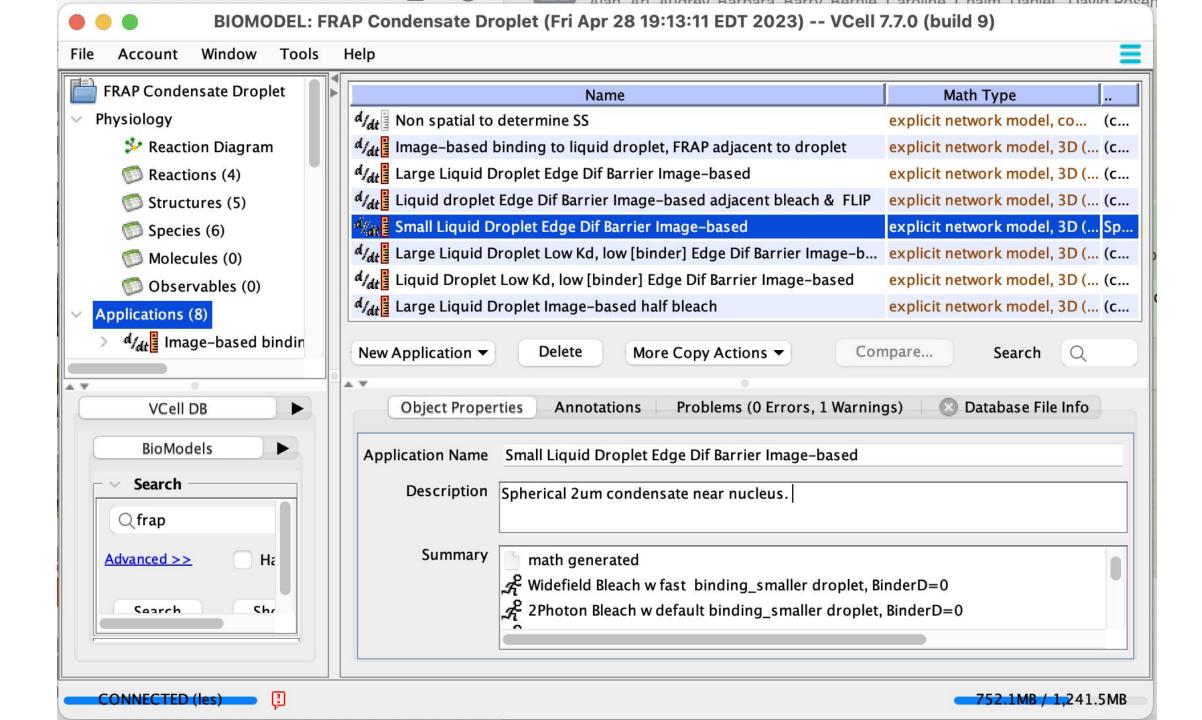
Cowan, A.E. & Loew, L.M. Biophys J. 2023 Jun 23;S0006-3495(23)00401-0 PUBMED:37353932/ doi: 10.1016/j.bpj.2023.06.013 VCell BioModels referenced in publication user: les biomodel name: FRAP_Membrane_Rel biomodel name: FRAP_Cyt biomodel name: FRAP_Cyt_Membrane_Binding biomodel name: FRAP_Condensate Droplet

Example 2: Using PDEs to simulate FRAP of a biomolecular condensate

100,00

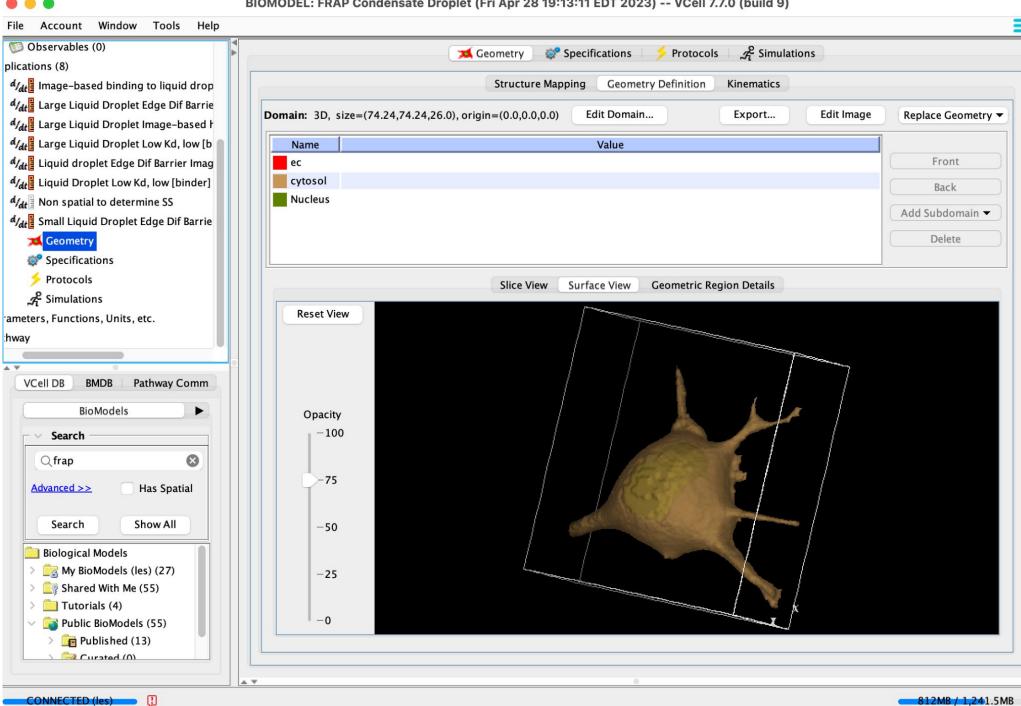
10

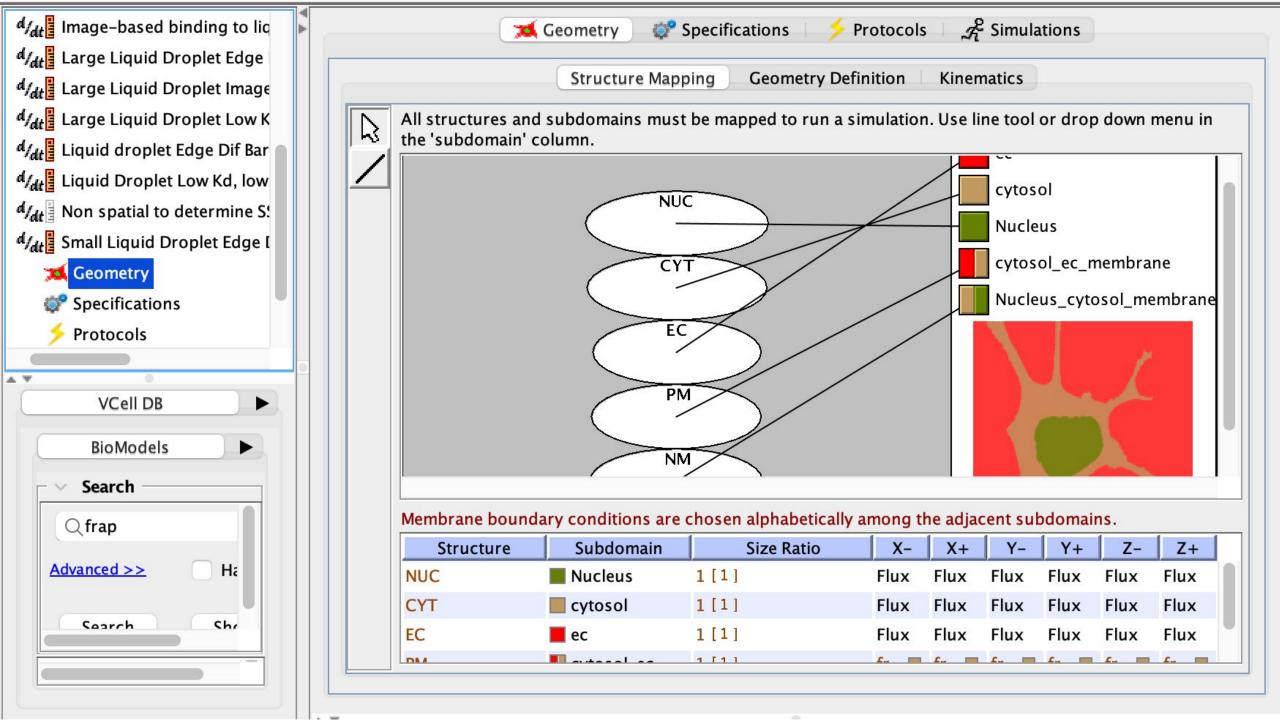

No Legend -


Ban, no., Con

PDE

3 m Composition 3 m Composition Beneficial Compositon Beneficial Compositon
6 6 6 6 1 a 000000000000000000000000000000000000
6 m Constraint <
1 m 000000000000000000000000000000000000
1 m 000000000000000000000000000000000000
3 m 000000000000000000000000000000000000
2 m 000000000000000000000000000000000000
1 m Construction Benef String Land 2: 100 + 1
2 m Concert A subject Production A subject of the
1 m 000000000000000000000000000000000000
4 m
1 m Construction Benefiting Land 2004 and 200
1 m = 0000000000000000000000000000000000
1 µ
1 m 000000000000000000000000000000000000
1 m 000000000000000000000000000000000000
1 m 000000000000000000000000000000000000
1 Impediate (1)
Sen5 5m ⊕ (TOR 0 _ 0 _ 0) (10 _ 10 R _ 0 _ 0) (10 - 0


Example 2: Using PDEs to simulate FRAP of a biomolecular condensate



BIOMODEL: FRAP Condensate Droplet (Fri Apr 28 19:13:11 EDT 2023) -- VCell 7.7.0 (build 9)

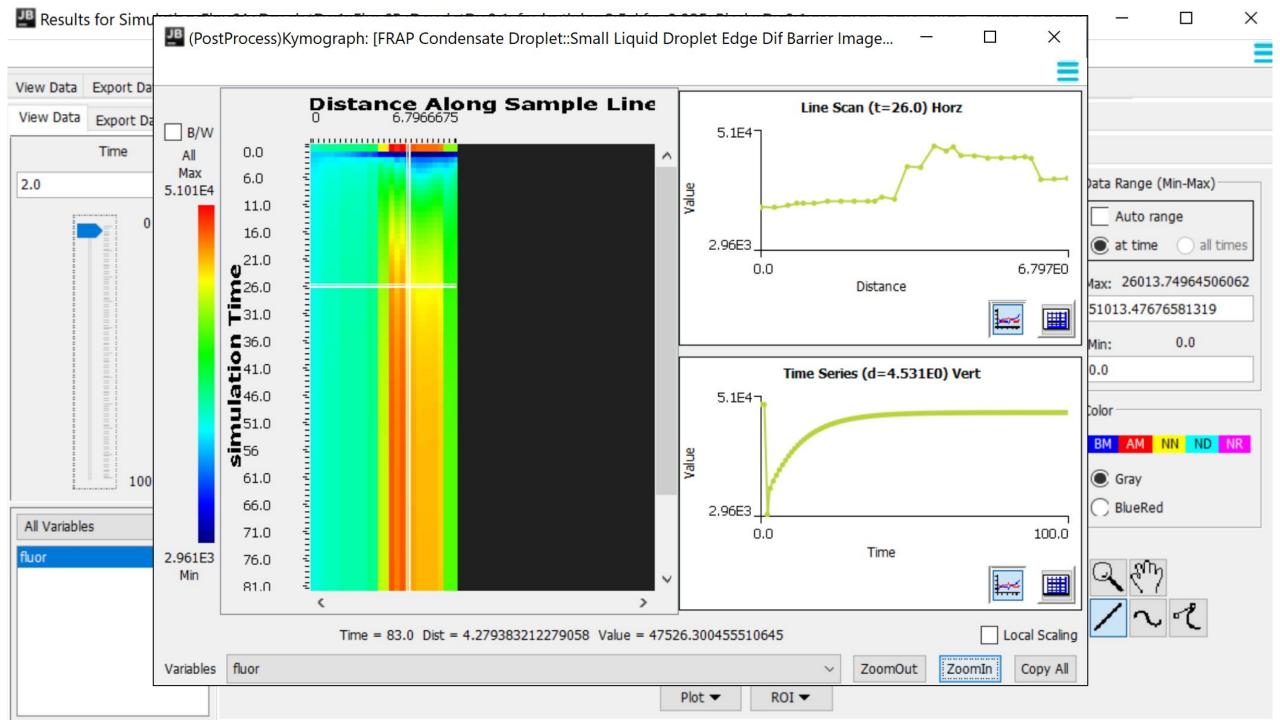
			🛛 💢 Geome	etry 🛛 💝 Spec	ifications \checkmark Protocols \checkmark $_{R}^{2}$ Simulations		
				Specie	s Reaction Network		
Species	Structure	Depiction	Clamped	Rules	Initial Condition	Well Mixed	Diffusion Constant
Fluor	CYT				1.4462440264001468 [µM]		(((((((x - 23.0) ^ 2.0) + ((y
Dark	CYT				0.0 [µM]		((((((x - 23.0) ^ 2.0) + ((y
Binder	CYT				(591.4462440264 * ((((x - 23.0) ^ 2.0) + ((y		(((((x - 23.0) ^ 2.0) + ((y -
FluorB	СҮТ	\bigcirc			(8.553755973599845 * ((((x - 23.0) ^ 2.0)		(((((x - 23.0) ^ 2.0) + ((y -
Laser	CYT	0			(exp(- (((z - 10.0) ^ 2.0) / (2.0 * (sigmaaxial		0.0 [µm ² .s ⁻¹]
DarkB	CYT				0.0 [µM]		(((((x - 23.0) ^ 2.0) + ((y -
arch Q							
arch Q							
arch Q		Object F	Properties 4	Annotations	Problems (0 Errors, 1 Warnings) 👘 💿 Datak	base File Info	
	scription		Properties A meter	Annotations	Problems (0 Errors, 1 Warnings) 👘 😒 Datak Expression	base File Info	Units
Des	scription centration for	Para	meter		Expression	2.0	70

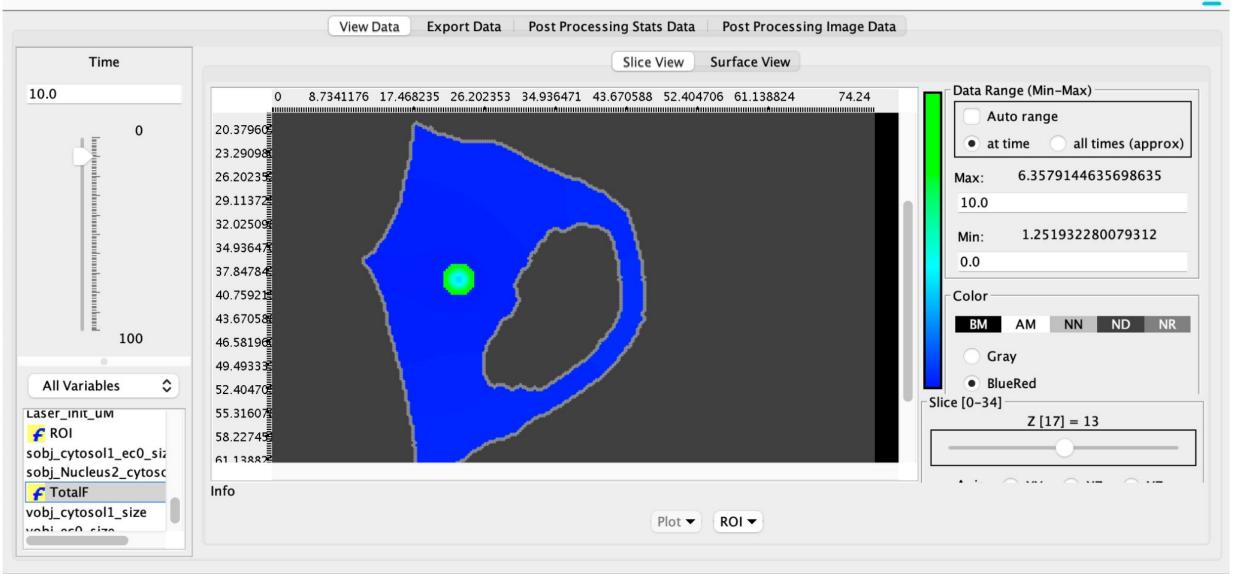
🛪 Geometry 🐨 Specifications 🗲 Protocols 🧏 Simulations	5	
Electrical Events Rate Rules Assignment Rules Micros	scope Measurements	
Fluorescence Function Name	fluor	
	Point Spread Function	
Z Projection		
C Gaussian Sigma XY Sig	jma Z	
	Choose Fluorescent Species	
Dark Binder Laser DarkB	FluorB Fluor >> <<	
	~	~

对 Geometry 🔰 🐲 Specifications 👘 🗲

Protocols \mathcal{A}^{2} Simulations

Simulations Output Functions Generated Math

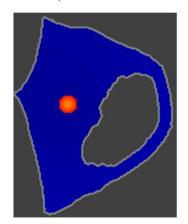

					🖽 👔 🜔
Name	End Time	Output Option	Solver	Running Status	Results
No edge BarrierWidefield Bleach w fast binding_smaller droplet, BinderD=0	100.0	every 1.0 s	Fully-Impl	completed	yes
No Edge BarrierWidefield Bleach w defalt binding_smaller droplet, BinderD=0	100.0	every 1.0 s	Fully-Impl	completed	yes
No Edge BarrierWidefield Bleach w very slow binding_smaller droplet, Binde	100.0	every 1.0 s	Fully-Impl	completed	yes
Widefield Bleach w very slow binding_smaller droplet, BinderD=0	100.0	every 1.0 s	Fully-Impl	completed	yes
Widefield Bleach w fast binding_smaller droplet, BinderD=0.1	100.0	every 1.0 s	Fully-Impl	completed	yes
2Photon Bleach w default binding_smaller droplet, BinderD=0.1	100.0	every 1.0 s	Fully-Impl	completed	yes
Fig. 7.B. With DropletD=1, EdgeD=0.1, kf=0.025, kr=2.5	100.0	every 1.0 s	Fully-Impl	completed	yes
No edge BarrierWidefield Bleach w fast binding_smaller droplet, BinderD=0	100.0	every 1.0 s	Fully-Impl	completed	yes
Fig. 6A. DropletD=1, Fig. 6B. DropletD=0.1; for both kr=2.5, kf = 0.025, Bi	100.0	every 1.0 s	Fully-Impl	completed	yes
Fig. 6C. DropletD=1, Fig. 6D. DropletD=0.1; for both kr=0.025, kf = 0.000	100.0	every 1.0 s	Fully-Impl	completed	yes
Widefield Bleach w very slow binding_smaller droplet, BinderD=0.1	100.0	every 1.0 s	Fully-Impl	completed	yes
r					
Object Properties Annotations Problems	s (O Errors, 1 V	Varnings) 🗌 🙁 D	atabase File Ir	nfo	
Annotation: Fig. 6A. DropletD=1, Fig. 6B. DropletD=0.1; for both kr=2.5, kf = 0.0	25, BinderD=0	0.1			

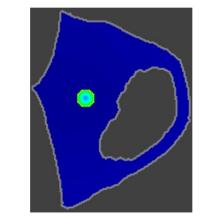

Settings:	Max timestep	Output	Rel tol	Abs tol
settings.	0.1s	every 1.0 sec	1.0E-7	1.0E-9

Mesh: 256x256x35 = 2293760 elements

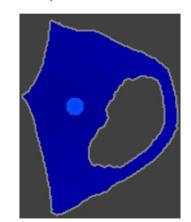
manana and an tale and the and the second former differences

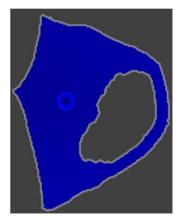
Geometry size: (74.24,74.24,26.0) microns

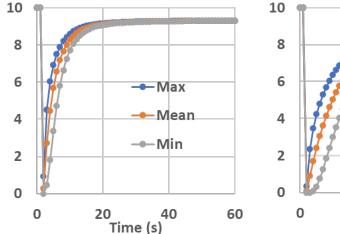


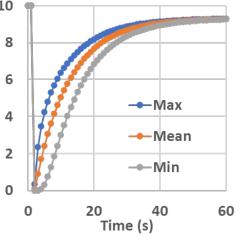

	Choose Parameter Values	
DropletD		
0.1		
1.0		
3.0		

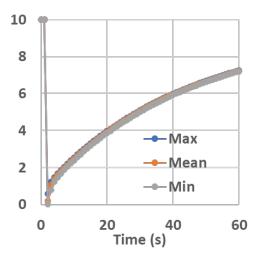
Example 2: Using PDEs to simulate FRAP of a biomolecular condensate Figure 6 from Cowan and Loew, *Biophys. J.* 2023

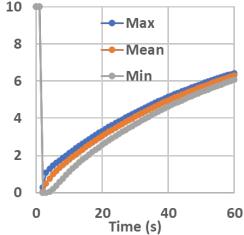

A. D=1 µm²/s k_r= 2.5 s⁻¹

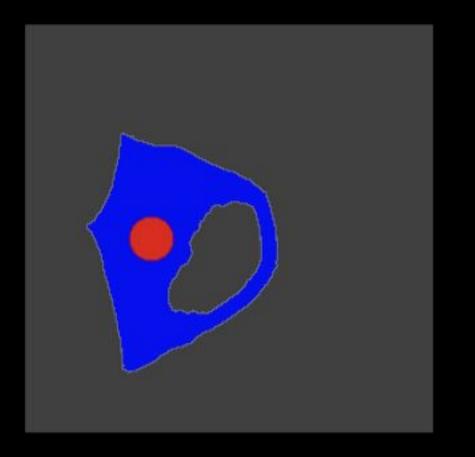

B. D=0.1 μm²/s k_r= 2.5 s⁻¹




C. D=1 µm²/s k_r= 0.025 s⁻¹




D. D=0.1 µm²/s k_r= 0.025 s⁻¹



Half bleach of a large droplet (Fig. 8b) (movie exported directly from VCell)

Simulation experiments can be directly compared to microscopy experiments to answer questions like: is it dissociation kinetics or intradroplet viscosity that controls the dynamics of biomolecular condensates?

5 Current Biology

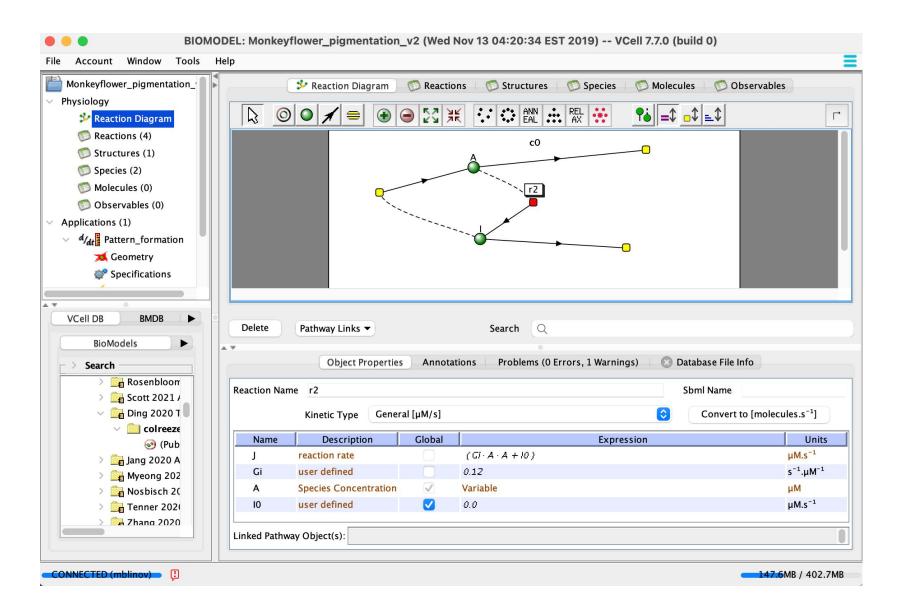
Supports open access

ARTICLE · Volume 30, Issue 5, P802-814.E8, March 09, 2020 · Open

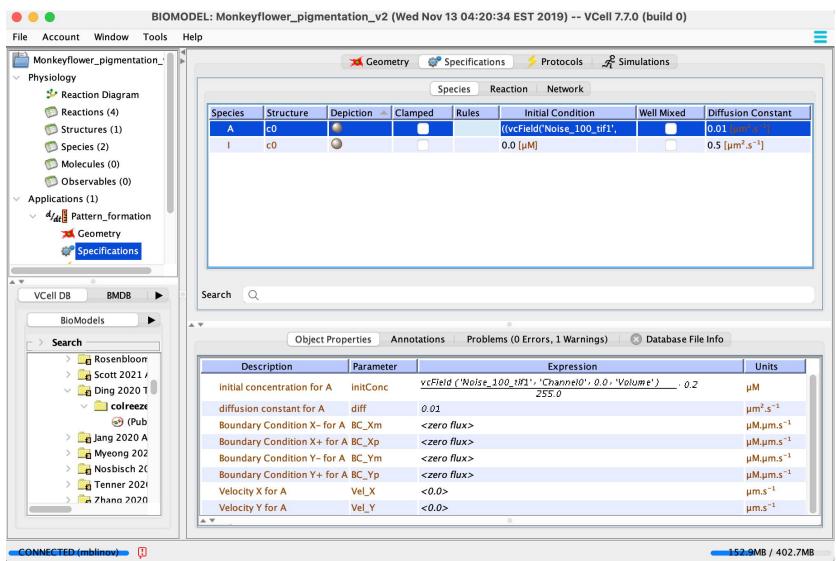
Archive 🗠 Download Full Issue

Two MYB Proteins in a Self-Organizing Activator-Inhibitor System Produce Spotted Pigmentation Patterns

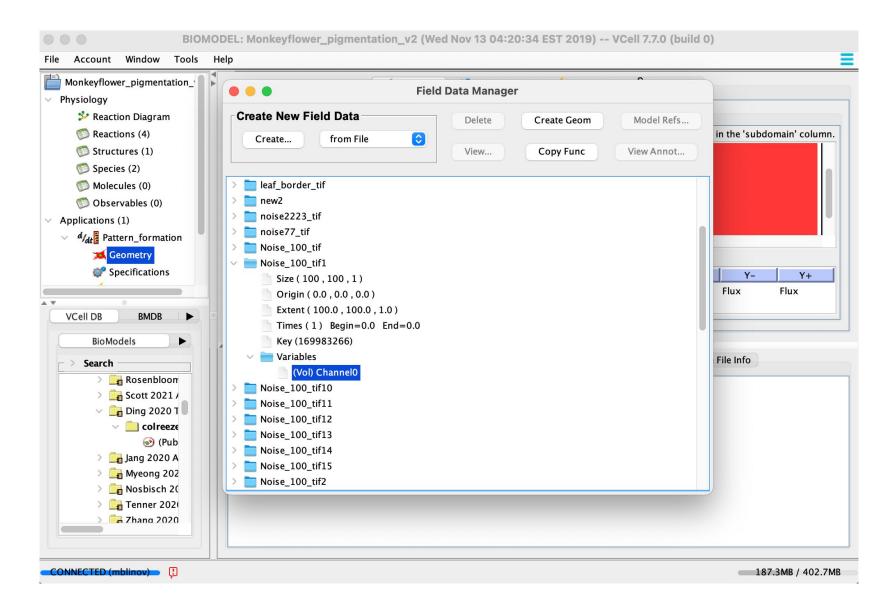
Baoqing Ding $^{1,9} \cdot$ Erin L. Patterson $^{2,3,8,9} \cdot$ Srinidhi V. Holalu $^{2,3,9} \cdot \ldots \cdot$ Michael L. Blinov $^{6} \cdot$ Benjamin K. Blackman $^{\circ} 2^{,3,10} \boxtimes \cdot$ Yao-Wu Yuan $^{\circ} 1^{,7} \boxtimes \ldots$ Show more


Monkeyflowers are a diverse genus of angiosperms that produce many beautiful and unique pigmentation patterns. Reaction-diffusion model with slow activator and fast

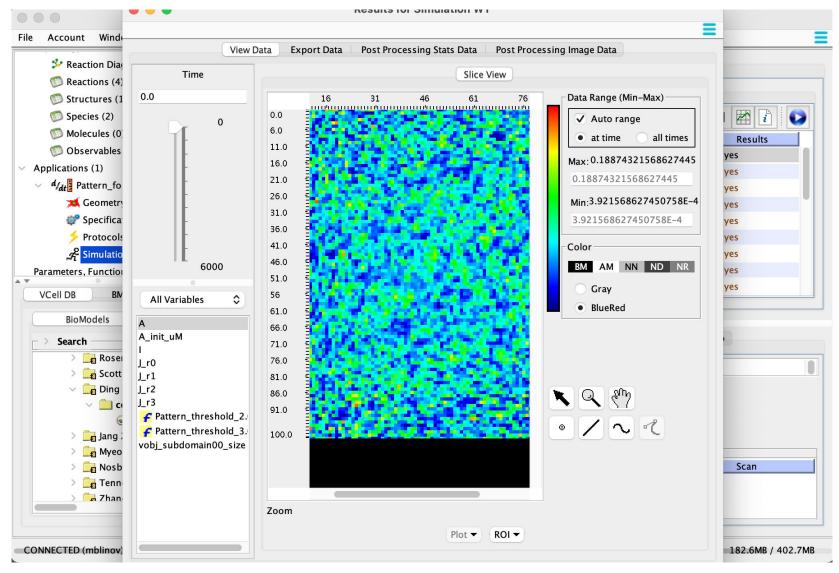
repressor (Turing system) is known to generate patterns.

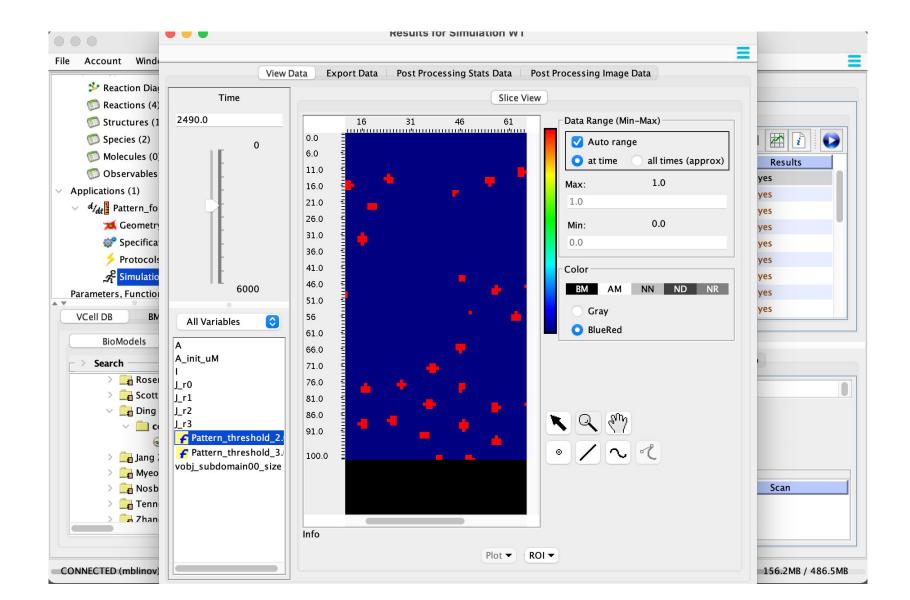


NEGAN RTO M


Using a simple Turing model to simulate pattern development

The initial species distributions can be defined from images (e.g. fluorescent image)


In VCell non-uniform initial distribution are called field data


Now we demonstrate how this data is used

* Prosting Discourse				🛪 Geomet	ry 🛛 💞 Specifications	Protocols	\mathcal{A}^{2} Simulations	
Reaction Diagram Reactions (4)				Ceoiner	specifications	Trotocols	A sinuations	
Structures (1)				Si	mulations Output Fun	ctions Generate	d Math	
Species (2)			1 📄 🛼 🛛	• _© 7.				> = 🖭 🗋 🚺
Molecules (0)	-				1	1		
Observables (0)	1		ame	End Time	Output Option	Solver	Running Status	Results
Applications (1)		WT		6000.0	every 10.0 s	Fully-Implicit	completed	yes
 d/dt Pattern_formatio 	n	_	NAi_0.06	6000.0	every 10.0 s	Fully-Implicit	completed	yes
Geometry			NAi_0.09	6000.0	every 10.0 s	Fully-Implicit	completed	yes
Specifications		_	NAi_0.12	6000.0	every 10.0 s	Fully-Implicit	completed	yes
			NAi_0.15	6000.0	every 10.0 s	Fully-Implicit	completed	yes
Protocols		_	NAi_0.18	6000.0	every 10.0 s	Fully-Implicit	completed	yes
$\mathcal{A}_{l}^{\mathcal{Q}}$ Simulations			NAi_0.185	6000.0	every 10.0 s	Fully-Implicit	completed	yes
Parameters, Functions, Uni	is, e	_	NAi_0.19	6000.0	every 10.0 s	Fully-Implicit	completed	yes
VCell DB BMDB		KIO_K	NAi_0.2	6000.0	every 10.0 s	Fully-Implicit	completed	yes
BioModels								
	A.4.		Object	Properties A	nnotations Problems (0 Errors, 1 Warning	s) 👘 🔯 Database F	ile Infe
> Search			Object	Flopenties	motations Froblems (o Errors, i warning		
> 📑 Rosenbloon	Δr	nnotation:	cloned from 'W	/T_l' owned by us	er mblinov			
> 📴 Scott 2021 / > 📴 Ding 2020 T								
v 📴 colreeze		Settings:	Max timestep	Output	Rel tol Abs tol			
			0.1s	every 10.0 sec	1.0E-11 1.0E-11			
		Mesh:	$101 \times 101 = 102$	201 elements		Geometry siz	e: (100.0,100.0) micr	ons
OPUB		✓ Parame	eters with value	es changed from	defaults			
> 📴 Jang 2020 A		Par	ameter Name		Default	New Value/Exp	oression	Scan
> 📑 Jang 2020 A > 📑 Myeong 202								
> 📴 Jang 2020 A								
> 🚅 Jang 2020 A > 🚅 Myeong 202 > 😭 Nosbisch 20								

Initial condition imported from image (e.g. noise generated in ImageJ)

End result of the simulation

To compare with experimental data, we can export in multiple formats, including N5

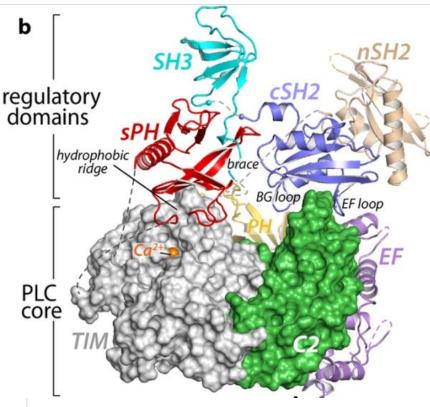
Iser Options xport Type C V HDF5 V QUICKTIME V GIF	✓ JPEG ✓ NRRD ✓ UCD ✓ UNSTRUC	T 💙 IMAGE 💙 PLY 💙 NS	Time Interval	Past Month	Past Year 🔾 Any
Export Table BM Name	App Name	Sim Name	Time Slice	Format	Date Exported
Monkeyflower_pigmentation_v2	Pattern_formation		0.0/6000.0	N5	2024/11/22 15:00:
Tutorial_MultiApp	d/dt 3D pde	Simulation4	0.0/9.9999999999999	N5	2024/11/19 15:13:
Tutorial_MultiApp	d/dt العام 3D pde	Simulation4	0.0/9.9999999999999	N5	2024/11/19 14:58:
Rule-based_egfr_compart	d/dt ∎ 3D	Spatial_3D	0.0/12.0	N5	2024/11/19 14:09:
Brown et al 2008 Purkinje 3D – 12 PF Sti	d/dt 3D PIP2_experimentally derived geom	stimulated synthesis and lat d	0.0/2.0	JPEG	2024/10/22 14:34:
Brown et al 2008 Purkinje 3D – 12 PF Sti	d/dt 3D PIP2_experimentally derived geom	stimulated synthesis and lat d	0.0/2.0	JPEG	2024/10/22 14:26:
Tutorial_MultiApp	Stoch Spatial	1000 particles	0.0/9.9999999999990		2024/10/22 14:24:
Brown et al 2008 Purkinje 3D – 12 PF Sti	d/dt 3D PIP2_experimentally derived geom	stimulated synthesis and lat d	0.0/2.0	GIF	2024/10/22 14:21:
Brown et al 2008 Purkinje 3D – 12 PF Sti	d/dt 3D PIP2_experimentally derived geom	stimulated synthesis and lat d	0.0/2.0	JPEG	2024/10/22 14:20:
Tutorial_MultiApp	d/dt 3D pde	Simulation4	0.0/9.9999999999999	JPEG	2024/10/22 14:18:
Copy Link Delete Export	Search			1050	2024/10/22 14 14
xport Details		Paramet	ors		
'ariables List: [A] Simulation ID: SimID_169880916_0_ Jame: monkey	olinov/0d8874422cbdd77.n5?dataSetName=71	Para	1	lt Value	New Value

Close

These images are accessible from FIJI/ImageJ with VCell plugin as hyperstacks

User Options Filters					
🗹 Any Time 🗌 Pas	t 24 Hours 🗌 Past M	onth 🗌 Past Year		Open	Open In Memory
Show Example E	xports			Copy Link	Use N5 Link ?
Personal Exports					
BioModel	Application	Simulation	Channel,Z,Time	Date Exported	N5 File Name
Monkeyflower_pig	Pattern_formation	WT	2,1,601	2024/11/22 15:00:59	monkey_thresh
Monkeyflower_pig	Pattern_formation	WT	2,1,601	2024/11/22 15:00:41	monkey
Tutorial_MultiApp	3D pde	Simulation4	5,70,101	2024/11/19 15:13:27	test_all_multiple_c
Tutorial_MultiApp	3D pde	Simulation4	2,70,101	2024/11/19 14:58:30	test_all
Rule-based_egfr_c	3D	Spatial_3D	2,48,241	2024/11/19 14:09:39	test_tutorial
Tutorial_MultiApp	3D pde	Simulation4	0,0,0	2024/07/18 11:35:13	test2024-07-18
Tutorial_MultiApp	3D pde	Simulation4	0,0,0	2024/04/10 10:46:07	tuto
Tutorial_MultiApp	3D pde	Simulation4	0,0,0	2024/03/19 14:33:10	Test_MA
Monkeyflower_pig	Pattern_formation	WT	0,0,0	2024/03/05 12:39:22	6668

Export Details					
Variables			Parameter Values		
Variables: [A]			Parameter	Default Value	New Value


Close

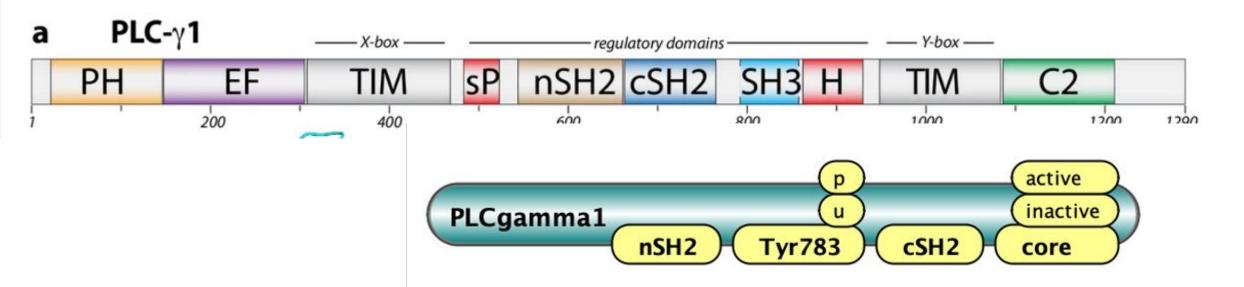
These images are accessible from FIJI/ImageJ with VCell plugin as hyperstacks

Filters	t 24 Hours 🗌 Past M	onth Past Year		Open	Open In Memory
Show Example E	_			Copy Link	· · · · · · · · · · · · · · · · · · ·
Personal Exports					
BioModel	Application	Simulation	Channel,Z,Time	Date Exported	N5 File Name
Monkeyflower_pig	Pattern_formation	WT	2,1,601	2024/11/22 15:00:59	monkey_thresh
Monkeyflower_pig	Pattern_formation	WT	2,1,601	2024/11/22 15:00:41	monkey
Tutorial_MultiApp	3D pde	Simulation4	5,70,101	2024/11/19 15:13:27	test_all_multiple_c
Tutorial_MultiApp	3D pde	Simulation4	2,70,101	2024/11/19 14:58:30	test_all
Rule-base 🔴 🔴 🔵	monkey (V)	patial_3D	2,48,241	2024/11/19 14:09:39	test_tutorial
Tutorial_M c:1/2 t:3	94/601 (787); 100x1	.00 imulation4	0,0,0	2024/07/18 11:35:13	test2024-07-18
Tutorial_M		imulation4	0,0,0	2024/04/10 10:46:07	tuto
Tutorial_M		imulation4	0,0,0	2024/03/19 14:33:10	Test_MA
c					
Export Details					
Export Details Variables Variables: [A]			Parameter Values	Default Value	New Value

Using color LUT to compare VCell images with real data

Filters Any Time Pas	t 24 Hours 🗌 Past Mo	onth Past Yea	r			Open	Open In Memory	/
Show Example E					Ć	Copy Link	Use N5 Link) 7
Personal Exports				LUT Editor				
BioModel	Application			LOT Editor		orted	N5 File Name	
/onkeyflower_pig	Pattern_formation	WT				:00:59	monkey_thresh	
Monkeyflower_pig	Pattern_formation	WT 📃				:00:41	monkey	
utorial_MultiApp	3D pde	Simula				:13:27	test_all_multiple_	c
utorial_MultiApp	3D pde	Simula			Open		test_all	
Rule-base 🔵 🔵 🔵		patia			Save		test_tutorial	
utorial_M c:1/2 t:39 utorial_M	94/601 (787); 100x1	00 imula			Set	:35:13):46:07	test2024-07-18	
utorial_M /lonkeyflo c Export Details		imula /T		Cancel	OK	:33:10 :39:22	Test_MA 6668	
Variables				Parameter Values				
Variables: [A]				Parameter	Default V	alue	New Value	
			0000					

BC RESEARCH ARTICLE


A kinetic model of phospholipase C-y1 linking structurebased insights to dynamics of enzyme autoinhibition and activation

Received for publication, October 19, 2021, and in revised form, March 27, 2022 Published, Papers in Press, March 31, 2022, https://doi.org/10.1016/j.jbc.2022.101886

Jamie L. Nosbisch¹, James E. Bear², and Jason M. Haugh^{3,*}

From the ¹Biomathematics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA; ²Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; ³Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA

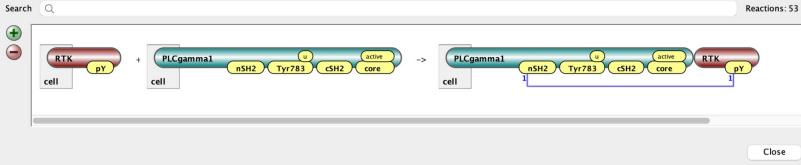
Edited by Roger Colbran

Molecules

Nosbisch PLCgamma1 2021		🧚 Reaction Diagram	n Reaction	s 👘 🔊 Structures	💯 Species	📁 Molecules	📁 Observables
Physiology	Name	Depiction	Notes	Link		BioNet	Gen Definition
🧚 Reaction Diagram	RTK				RTK(pY)	2.0.101	
💯 Reactions (12)	PLCgamma1	CO2009	63			SH2,Tyr783~u~i	p,cSH2,core~inactive~active)
Structures (1)							
💯 Species (2)							
Molecules (2)							
💯 Observables (9)							
Applications (1)							
> d _{/dt} Application0							
Parameters, Functions, Units, etc.							
Pathway							
VCell DB BMDB	New Molecule	Delete Pathwa	v links 🔻	502	arch O		
VCell DB BMDB BioModels	New Molecule		y Links 🔻	0	arch Q		
VCell DB BMDB BioModels Search			y Links 👻 Object Properties	0	rch Q Problems (0 Error	rs, 1 Warnings)	
VCell DB BMDB BioModels Search Biological Models				0		rs, 1 Warnings)	
VCell DB BMDB BioModels Search				Annotations P		rs, 1 Warnings)	
VCell DB BMDB BioModels Search Biological Models > My BioModels (mblinov) (Anchor Molecule No restrictions 		bject Properties	Annotations P	Problems (0 Error	rs, 1 Warnings)	
VCell DB BMDB BioModels Search Biological Models Biological Models (mblinov) (Shared With Me (711) Shared With Me (711) Public BioModels (1009)	Anchor Molecule	0	bject Properties	Annotations P	Problems (0 Error	rs, 1 Warnings)	
VCell DB BMDB BioModels Search Biological Models > @ My BioModels (mblinov) (> @ Shared With Me (711) > @ Tutorials (10) < @ Public BioModels (1009) > @ Published (215)	Anchor Molecule No restrictions Only these: 	0	bject Properties	Annotations P	Problems (0 Error	rs, 1 Warnings)	
VCell DB BMDB BioModels Search Biological Models Signal Models (mblinov) (Shared With Me (711) Shared With Me (711) Public BioModels (1009) Public BioModels (1009) Curated (58)	Anchor Molecule No restrictions 	PLCgamma1	bject Properties	Annotations P	Problems (0 Error	rs, 1 Warnings)	
VCell DB BMDB BioModels Search Biological Models Biological Models (mblinov) (Shared With Me (711) Shared With Me (711) Public BioModels (1009) Public BioModels (1009) Published (215)	Anchor Molecule No restrictions Only these: 	PLCgamma1	bject Properties	Annotations P	Problems (0 Error	rs, 1 Warnings)	
VCell DB BMDB BioModels Search Biological Models Shared With Me (711) Shared With Me (711) Public BioModels (1009) Public BioModels (1009) Curated (58)	Anchor Molecule No restrictions Only these: 	PLCgamma1	bject Properties	Annotations P	Problems (0 Error	rs, 1 Warnings)	
VCell DB BMDB BioModels Search Biological Models Shared With Me (711) Shared With Me (711) Public BioModels (1009) Public BioModels (1009) Curated (58)	Anchor Molecule No restrictions Only these: 	PLCgamma1	bject Properties	Annotations P	Problems (0 Error	rs, 1 Warnings)	

Reactions

Nosbisch PLCgamma1 2021	*	Reaction Diagram	👘 💭 Reactions 👘 💭 Structur	es 🔰 📁 Spe	cies 👘 💭	Molecules	📁 Observables
Physiology	Reaction Name	Structure	Depiction	Kinetics	Notes	Link	1
🧚 Reaction Diagram	Reaction Rule r01	cell			Notes	Link	@cell:RTK(pY)+@cell:PLCgamma1(nSH
Reactions (12)	Reaction Rule r02	cell			-		<pre>@cell:RTK(pY)+@cell:PLCgamma1(nSH</pre>
💯 Structures (1)	Reaction Rule r03	cell					<pre>@cell:RTK(pY!1).PLCgamma1(nSH2!1) -</pre>
💯 Species (2)	Reaction Rule r04	cell		MassAction			@cell:RTK(pY!1).PLCgamma1(nSH2!1,T
💯 Molecules (2)	Reaction Rule r05	cell	0 0 09 -> 0 0 09	MassAction			@cell:PLCgamma1(Tyr783~p) -> @cel
🗭 Observables (9)	Reaction Rule r06	cell	<u>∞∞∞</u> -> <u>∞∞∞</u>	MassAction			@cell:PLCgamma1(cSH2!1,core~inactiv
Applications (1)	Reaction Rule r07	cell	-> <u>0000</u>	MassAction			@cell:PLCgamma1(cSH2,core~inactive
> d/dt Application0	Reaction Rule r08	cell	COSOS -> COSOS	MassAction			@cell:PLCgamma1(Tyr783~p,cSH2) ->
Parameters, Functions, Units, etc.	Reaction Rule r09	cell	COOO -> COOO	MassAction			@cell:PLCgamma1(Tyr783~p!1,cSH2!1
Pathway	Reaction Rule r10	cell		MassAction	6-9		@cell:RTK(pY!1).PLCgamma1(nSH2!1,c
	Reaction Rule r11	cell	-> 0000	MassAction			@cell:PLCgamma1(nSH2,core~inactive
VCell DB BMDB	Reaction Rule r12	cell	uplicate Delete Pat	MassAction		Search	@cell:PLCgamma1(core~active) -> @c
VCell DB BMDB > BioModels		w Rule D	uplicate Delete Pat	hway Links 🔻			
VCell DB BMDB > BioModels > Search	New Reaction Ne	w Rule D		hway Links 🔻	(0 Errors, 1 ^v		
VCell DB BMDB BioModels Search Biological Models	New Reaction Ne	w Rule D	uplicate Delete Pat	hway Links 🔻			
VCell DB BMDB BioModels Search Biological Models Sign My BioModels (mblinov) (New Reaction Ne	w Rule Di	uplicate Delete Pat	hway Links 👻 Problems			
VCell DB BMDB BioModels Search Biological Models > 3 My BioModels (mblinov) (> 3 Shared With Me (711)	New Reaction Ne	w Rule Di	uplicate Delete Pat	hway Links 👻 Problems		Warnings)	
VCell DB BMDB BioModels Search Biological Models > G My BioModels (mblinov) (> G Shared With Me (711) > Tutorials (10)	New Reaction Ne	w Rule Di	uplicate Delete Pat Object Properties Annotations	hway Links 👻 Problems Z Editor		Warnings)	
VCell DB BMDB BioModels Search Biological Models My BioModels (mblinov) (Shared With Me (711)	New Reaction Ne		uplicate Delete Pat Object Properties Annotations Kinetics + PLCgamma1	hway Links 👻 Problems Z Editor		Warnings)	(Q
VCell DB BMDB BioModels Search Biological Models My BioModels (mblinov) (Shared With Me (711) Tutorials (10) Public BioModels (1009)	New Reaction Ne	w Rule D	uplicate Delete Pat Object Properties Annotations	hway Links 👻 Problems Z Editor		Warnings)	(Q
VCell DB BMDB BioModels Search Biological Models Shared With Me (711) Shared With Me (711) Public BioModels (1009) Public BioModels (1009) Published (215)	New Reaction New Reversible Add Reactant Add Product		uplicate Delete Pat Object Properties Annotations Kinetics +	hway Links 👻 Problems Z Editor		Warnings)	(Q
VCell DB BMDB BioModels Search Biological Models Shared With Me (711) Shared With Me (711) Public BioModels (1009) Public BioModels (1009) Curated (58)	New Reaction Ne Reversible + • Add Reactant Add Product Single Row Viewer		uplicate Delete Pat Object Properties Annotations Kinetics + PLCgamma1 cell	hway Links Problems Control C	? 783 CSHZ ?	Warnings)	(Q
BioModels Search Biological Models Shared With Me (711) Tutorials (10) Public BioModels (1009) Public BioModels (215) Curated (58)	New Reaction New Reversible + (Add Reactant Add Product Single Row Viewer Show Molecule Color		uplicate Delete Pat Object Properties Annotations Kinetics +	hway Links 👻 Problems Z Editor	? 783 CSHZ ?	Warnings)	
VCell DB BMDB BioModels Search Biological Models My BioModels (mblinov) (Shared With Me (711) Tutorials (10) Public BioModels (1009) Public BioModels (1009) Curated (58)	New Reaction Ne Reversible + • Add Reactant Add Product Single Row Viewer		uplicate Delete Pat Object Properties Annotations Kinetics + PLCgamma1 cell	hway Links Problems Control C	? 783 CSHZ ?	Warnings)	(Q


Network generation

Nosbisch PLCgamma1 2021	💢 Geometry 🛛 👹 Sp	ecifications 🥠 🗲 Protocols 👘 ,	f_l^2 Simulations	📐 Parameter Estimation
Physiology		Species Reaction	Network	
Reaction Diagram		species neuction		
Reactions (12)	Network Constraints			
Structures (1)	Constraint	Value		Default
💯 Species (2)	Max Iterations	7	1	
💯 Molecules (2)	Max Molecules / Species	10	1	0
📁 Observables (9)	Generated Network			
Applications (1)	Generated Network			
✓ d _{fdt} Application0	Species: 17		View	Edit / Test Constraints
🗯 Geometry	Reactions: 53		View	Create new VCell BioModel from Network
Specifications	Reactions. 55		view	Create new vcen biomoder non network
> Protocols	Observables Map		View	
			View	
5 Protocols	Observables Map Warning: none		View	
✓ Protocols ✓ Protocols ✓ Simulations ✓ Parameter Estimation	Warning: none		View	
✓ Protocols			View	
✓ Protocols ✓ Protocols ✓ Simulations ✓ Parameter Estimation	Warning: none		View	
Protocols A Simulations Parameter Estimation VCell DB BMDB BioModels	Warning: none	notations Problems (0 Errors		Notwork Concertion Status
 Protocols Simulations Parameter Estimation VCell DB BioModels Search 	Warning: none	notations Problems (0 Errors		Network Generation Status
 Protocols Simulations Parameter Estimation VCell DB BMDB BioModels Search Biological Models 	Warning: none Search Q Object Properties An	notations Problems (0 Errors		Network Generation Status
 Protocols Simulations Parameter Estimation VCell DB BioModels Search Biological Models My BioModels (mblinov) (Warning: none Search Q Object Properties An Running BioNetGen	notations Problems (0 Errors		Network Generation Status
 Protocols Simulations Parameter Estimation VCell DB BioModels Search Biological Models My BioModels (mblinov) (Shared With Me (711) 	Warning: none Search Q Object Properties An Running BioNetGen Iteration 0: 2 species	notations Problems (0 Errors		Network Generation Status
 Protocols Simulations Parameter Estimation VCell DB BMDB BioModels Search Biological Models My BioModels (mblinov) (Shared With Me (711) Tutorials (10) 	Warning: none Search Q V Running BioNetGen Iteration 0: 2 species Iteration 1: 4 species Iteration 2: 7 species	notations Problems (0 Errors		Network Generation Status
 Protocols Simulations Parameter Estimation VCell DB BMDB BioModels BioModels Search Biological Models Shared With Me (711) Shared With Me (711) Tutorials (10) Public BioModels (1009)	Warning: none Search Q V Running BioNetGen Iteration 0: 2 species Iteration 1: 4 species Iteration 2: 7 species Iteration 3: 10 species	notations Problems (0 Errors		Network Generation Status
 Protocols Simulations Parameter Estimation VCell DB BioModels BioModels Search Biological Models My BioModels (mblinov) (Shared With Me (711) Tutorials (10) Public BioModels (1009) Published (215) 	Warning: none Search Q V Running BioNetGen Iteration 0: 2 species Iteration 1: 4 species Iteration 2: 7 species	notations Problems (0 Errors		Network Generation Status
 Protocols Simulations Parameter Estimation VCell DB BMDB BioModels BioModels Search Biological Models Shared With Me (711) Shared With Me (711) Tutorials (10) Public BioModels (1009)	Warning: none Search Q V Note: Construction Running BioNetGen Iteration 0: 2 species Iteration 0: 2 species Iteration 1: 4 species Iteration 2: 7 species Iteration 2: 7 species Iteration 3: 10 species Iteration 4: 13 species Iteration 5: 16 species Iteration 6: 17 species	notations Problems (0 Errors		Network Generation Status
Protocols Simulations Parameter Estimation VCell DB BMDB BioModels BioModels Search Biological Models Shared With Me (711) Shared With Me (711) Tutorials (10) Public BioModels (1009) Public BioModels (1009) Curated (58)	Warning: none Search Q	notations Problems (0 Errors		Network Generation Status
Protocols Simulations Parameter Estimation VCell DB BMDB BioModels BioModels Search Biological Models Shared With Me (711) Shared With Me (711) Tutorials (10) Public BioModels (1009) Public BioModels (1009) Curated (58)	Warning: none Search Q V Note: Construction Running BioNetGen Iteration 0: 2 species Iteration 0: 2 species Iteration 1: 4 species Iteration 2: 7 species Iteration 2: 7 species Iteration 3: 10 species Iteration 4: 13 species Iteration 5: 16 species Iteration 6: 17 species	notations Problems (0 Errors		Network Generation Status

CONNECTED (mblinov)

Generated species and reactions

Rule	Structure	Depiction	BioNetGen Definition
r02	cell		RTK(pY) + PLCgamma1(Tyr783~u,cSH2,core~active,nSH2) -> PLCgamma1(Tyr783~u,cSH2,core~active,nSH2!.
r02	cell	+ 0000 -> 0000	RTK(pY) + PLCgamma1(Tyr783~p,cSH2,core~active,nSH2) -> PLCgamma1(Tyr783~p,cSH2,core~active,nSH2!.
r02	cell		RTK(pY) + PLCgamma1(Tyr783~p!1,cSH2!1,core~active,nSH2) -> PLCgamma1(Tyr783~p!1,cSH2!1,core~activ.
r01	cell	+ 00000 -> 00000	RTK(pY) + PLCgamma1(Tyr783~u,cSH2!1,core~inactive!1,nSH2) -> PLCgamma1(Tyr783~u,cSH2!1,core~inact.
r01	cell	+ 0000 -> 0000	RTK(pY) + PLCgamma1(Tyr783~u,cSH2,core~inactive,nSH2) -> PLCgamma1(Tyr783~u,cSH2,core~inactive,n
r01	cell	+ 00000 -> 00000	RTK(pY) + PLCgamma1(Tyr783~p,cSH2!1,core~inactive!1,nSH2) -> PLCgamma1(Tyr783~p,cSH2!1,core~inact
r01	cell	+ 0000 -> 0000	RTK(pY) + PLCgamma1(Tyr783~p,cSH2,core~inactive,nSH2) -> PLCgamma1(Tyr783~p,cSH2,core~inactive,n
r01	cell	+ 0000 -> 0000	RTK(pY) + PLCgamma1(Tyr783~p!1,cSH2!1,core~inactive,nSH2) -> PLCgamma1(Tyr783~p!1,cSH2!1,core~ina
r03	cell		PLCgamma1(Tyr783~u,cSH2!1,core~inactive!1,nSH2!2).RTK(pY!2) -> RTK(pY) + PLCgamma1(Tyr783~u,cSH2!
r03	cell	$\bigcirc \bigcirc $	PLCgamma1(Tyr783~u,cSH2,core~inactive,nSH2!1).RTK(pY!1) -> RTK(pY) + PLCgamma1(Tyr783~u,cSH2,cor.
r03	cell		PLCgamma1(Tyr783~p,cSH2!1,core~inactive!1,nSH2!2).RTK(pY!2) -> RTK(pY) + PLCgamma1(Tyr783~p,cSH2!
r03	cell		PLCgamma1(Tyr783~u,cSH2,core~active,nSH2!1).RTK(pY!1) -> RTK(pY) + PLCgamma1(Tyr783~u,cSH2,core~
r03	cell		PLCgamma1(Tyr783~p,cSH2,core~inactive,nSH2!1).RTK(pY!1) -> RTK(pY) + PLCgamma1(Tyr783~p,cSH2,cor.
r03	cell		PLCgamma1(Tyr783~p,cSH2,core~active,nSH2!1).RTK(pY!1) -> RTK(pY) + PLCgamma1(Tyr783~p,cSH2,core~
r03	cell		PLCgamma1(Tyr783~p!1,cSH2!1,core~inactive,nSH2!2).RTK(pY!2) -> RTK(pY) + PLCgamma1(Tyr783~p!1,cSH
r03	cell		PLCgamma1(Tyr783~p!1,cSH2!1,core~active,nSH2!2).RTK(pY!2) -> RTK(pY) + PLCgamma1(Tyr783~p!1,cSH2!
r04	cell		PLCgamma1(Tyr783~u,cSH2!1,core~inactive!1,nSH2!2).RTK(pY!2) -> PLCgamma1(Tyr783~p,cSH2!1,core~ina.
r04	cell		PLCgamma1(Tyr783~u,cSH2,core~inactive,nSH2!1).RTK(pY!1) -> PLCgamma1(Tyr783~p,cSH2,core~inactive,.
r04	cell		PLCgamma1(Tyr783~u,cSH2,core~active,nSH2!1).RTK(pY!1) -> PLCgamma1(Tyr783~p,cSH2,core~active,nSH.
r05	cell		PLCgamma1(Tyr783~p,cSH2!1,core~inactive!1,nSH2!2).RTK(pY!2) -> PLCgamma1(Tyr783~u,cSH2!1,core~ina
r05	cell	COSOS -> COSOS	PLCgamma1(Tyr783~p,cSH2!1,core~inactive!1,nSH2) -> PLCgamma1(Tyr783~u,cSH2!1,core~inactive!1,nSH2)
r05	cell	\sim	DI Caamma1/Tur7282-p cSH2 core-inactive pSH2111 PTK(pV11) DI Caamma1/Tur728-uLcSH2 core-inactive

Observables

Nosbisch PLCgamma1 2021	🤣 Reaction Diagra	m 🔰 📁 Reaction	ns 👘 觉 Structur	res 👘 📁 S	Species 🔰 🧭 Molecules 🛛 🍘 Observables	
Physiology	Name	Structure	Depiction	Notes	BioNetGen Definition	Count
🥍 Reaction Diagram	O0_RTK_tot	cell	\bigcirc	,	RTK()	Molecules
Reactions (12)	O0_PLCgamma1_tot	cell	0000		PLCgamma1()	Molecules
💯 Structures (1)	00_PLCgamma1_active	cell	00000		PLCgamma1(core~active!?)	Molecules
💯 Species (2)	O0_PLCgamma1_inactive	cell	0000		PLCgamma1(core~inactive!?)	Molecules
Molecules (2)	O0_PLCgamma1_pTyr783	cell	0000		PLCgamma1(Tyr783~p!?)	Molecules
💯 Observables (9)	O0_PLCgamma1_dpTyr783	cell	0000		PLCgamma1(Tyr783~u!?)	Molecules
Applications (1)	O0_PLCgamma1_RTK_bound_inactive	cell	~~~~~~		RTK(pY!1).PLCgamma1(nSH2!1,core~inactive!?)	Molecules
√ d _{/dt} Application0	O0_PLCgamma1_RTK_bound	cell			RTK(pY!1).PLCgamma1(nSH2!1)	Molecules
对 Geometry	00_PLCgamma1_cytosol	cell	0000		PLCgamma1(nSH2,core~inactive!?)	Molecules
Specifications						
Protocols						
A ² Simulations						
A sindlations						
\land Parameter Estimation						
Rarameter Estimation						
VCell DB BMDB	New Observable Duplicate	Delete	Pathway Links 🔻		Search Q	
VCell DB BMDB	•			0		
VCell DB BMDB	•	Delete F Object Properties		Probler	Search Q ms (0 Errors, 1 Warnings)	
VCell DB BMDB BioModels Search Biological Models				Probler		
VCell DB BMDB BioModels Search Biological Models My BioModels (mblinov) (•	Object Properties	Annotations	?		
VCell DB BMDB BioModels Search Biological Models My BioModels (mblinov) (Shared With Me (711)	Add Pattern PLCgamm	Object Properties	Annotations	?		
VCell DB BMDB BioModels Search Biological Models Search Biological Models (mblinov) (Shared With Me (711) Tutorials (10)	Add Pattern O Multimolecular	Object Properties	Annotations	?		
VCell DB BMDB BioModels Search Biological Models Signal Models (mblinov) (Shared With Me (711) Tutorials (10) Public BioModels (1009)	Add Pattern PLCgamm	Object Properties	Annotations	?		
VCell DB BMDB BioModels Search Biological Models Search Biological Models (mblinov) (Shared With Me (711) Shared With Me (711) Difference (1009) Difference (1009)	Add Pattern O Multimolecular	Object Properties	Annotations	?		
VCell DB BMDB BioModels Search Biological Models Search Biological Models (mblinov) (Shared With Me (711) Sign Tutorials (10) Dublic BioModels (1009) Sign Published (215) Curated (58)	Add Pattern Add Pattern PLCgamme Cell Polymer of length = 2	Object Properties	Annotations	?		
VCell DB BMDB BioModels Search Biological Models Search Biological Models (mblinov) (Shared With Me (711) Shared With Me (711) Difference (1009) Difference (1009)	Add Pattern Multimolecular Polymer of length = 2 length > 1	Object Properties	Annotations	?		
VCell DB BMDB BioModels Search Biological Models Shared With Me (711) Shared With Me (711) Public BioModels (1009) Public BioModels (1009) Curated (58)	Add Pattern Add Pattern PLCgamme Cell Polymer of length = 2	Object Properties	Annotations	?		
VCell DB BMDB BioModels Search Biological Models Shared With Me (711) Shared With Me (711) Public BioModels (1009) Public BioModels (1009) Curated (58)	Add Pattern Multimolecular Polymer of length = 2 length > 1	Object Properties	Annotations	?		

NNECTED (mblinov) []

236.8MB / 486.5MB